
SourceForge, Hamlib, and Rigserve:
Free Beer, Free Speech, and Rig Control
Martin Ewing, AA6E

Abstract

Hamlib is a software library to support ham radio rig control begun in 2000, supporting many radio types
and computer platforms. Rigserve is a new network server approach to rig control, inspired by Hamlib
and based on Python classes. Both projects are managed at SourceForge.net. There are many advantages
to developing Open Source Software in this open project environment.

KeyWords

rig control, open source, software development

Introduction

Amateur Radio software development and products
have followed various development paths, from
“amateur” and informal to fully commercial and
professional. In this paper we describe two projects
for rig control, and we also show how an Open
Source Software (OSS) development approach has
worked for them.

Ham culture (at its best) is about mentoring, help-
ing, and sharing. As amateurs, we are happy to use
commercial products when available, but many of
us would prefer our software to be as widely used
as possible rather than to seek a financial return.
Even if a particular project does not take off, shar-
ing ideas will support new advances elsewhere.

About Open Source Development

You have a great idea for a new Amateur Radio
software application and you want to do this in the
Free and Open Source Software style – making
your code available at no charge and freely adapt-
able by other developers. You want to attract other
programmers to help develop your code, and you
want to attract users once the project is ready for
beta testing or production. You need a revision
control system to keep track of program versions
and to combine the work of multiple developers.

Any Linux computer has most of the tools you need
in principle, but in practice many projects choose to

use an open source project hosting service. There
are several such services, but SourceForge.net [1] is
probably the largest and most popular. At no
charge, a project on SourceForge.net receives Con-
tent Versioning System (CVS) or Subversion
(SVN) source repository accounts, user and devel-
oper support forums and mailing lists, and a file
repository for formally released project versions.
In addition, there are facilities for bug reporting and
tracking along with project-specific web and wiki
hosting. SourceForge.net claims over 100,000
projects and 1,000,000 registered users. There are
219 projects identified “ham radio”.

The Hamlib Project

Hamlib [2] is an example of a mid-scale OSS
project.

The Hamlib project is an open source programming
library for Amateur Radio rig control. Begun in
2000 by Frank Singleton (VK3FCS/KM5WS) and
Stéphane Fillod (F8CFE), Hamlib now provides at
least alpha support for 140 types of receivers,
transceivers, and even some antenna rotators. The
library is coded in standard C, but bindings are pro-
vided for C++, Perl, Python, and TCL. The source
distribution now has some 188,000 lines of code in
767 files. There are 31 current developers (with
CVS privileges) and a number of testers who con-
tribute patches.

As a programming library, Hamlib targets develop-
ers, not end users. Having a convienient way to in-
terface your new ham application to hundreds of
rigs saves a lot of time and expands the potential
user base for your programming efforts. Hamlib
has been adopted by Dream, fldigi, gMFSK, Gpre-
dict, grig, Xlog, PSKmail, and other projects.
Hamlib is developed under Linux, but can operate
under Windows and other operating systems.

Figure 1 shows how Hamlib works. It is a library
linked with your application program. A “backend”
handles the interface to your particular rig. Ham-
lib’s main role is to be a subroutine library that will
be linked in with a developer’s program, but it also
has a server personality. It is able to respond to
Sun RPC calls provided across a network or on the
local machine.

Figure 1. Hamlib Scheme

Hamlib is provided under the GNU “Lesser Gener-
al Public License”[3] (LGPL), which makes it pos-
sible for commercial developers to use the library
with proprietary programs. Hamlib’s current distri-
bution is version 1.2.6.

As a 7 year old effort, Hamlib faces problems that
are common in mature OSS projects. Developers
come and go as interests change, and early leaders
have moved on. The code, after passing through
the hands of dozens of programmers, has suffered
feature creep and other technical issues that are
stimulating design ideas for a potential version 2
release.

There are a few issues to highlight. First is the on-
going question of whether a general rig control so-
lution should present the programmer with a sim-
ple, lowest common denominator interface that pro-
vides the basic functions used in the majority of
control applications: read/set frequency, operating

mode, filter settings, etc. Or, should we try to ex-
press the complicated options of the latest rigs?

Another question is how to fulfill the promise of
wide interoperability among languages and plat-
forms. This is a difficult problem for a library that
must be linked with user software. Hamlib relies on
SWIG [4], which wraps the C library calls for the
Perl, Python, and TCL languages, with mixed suc-
cess.

Finally, any control software that aspires to cover a
wide range of rigs has a problem: how to code,
test, and maintain rig drivers when no single pro-
grammer has access to very many live units to test?
The project relies on back-end developers to pro-
vide code for the specific rigs they own themselves.
This puts a premium on providing a simple and
easy to program interface for these developers, who
may be amateurs in software development – as well
as radio.

The Rigserve Project

Hamlib’s classic C language approach is efficient,
elegant, and familiar – but rather baroque. In our
opinion, C’s low-level syntax works against clarity
and ease of development. In addition, Hamlib has
some internal architectural limitations – a 32-wide
bit field that used to be generous, but now we are
running out of bits for internal flags. Header files,
preprocessor macros, elaborate typing, the need to
compile in many environments have led to a struc-
ture that is not easy for new developers to master.
(Fortunately, these problems are not very apparent
to Hamlib users, who are the developers of new ap-
plications.)

Rigserve [5] is a new project begun as a demonstra-
tion of an approach to a second version of Hamlib,
but there is no compatibility with Hamlib v1.
Rigserve avoids the problems of library compila-
tion and binding by running as a self-contained
TCP/IP server using a straightforward human-read-
able protocol. Any programmer can communicate
from any platform – anywhere (within security lim-
its). See Figure 2.

Figure 2. Rigserve Scheme

An equally important feature of Rigserve is that it
is implemented in a high-level object-oriented pro-
gramming language, Python. We prefer Python be-
cause of its rapid debugging, cross platform avail-
ability, its rich language and run-time environment,
and its expressive, but straightforward class syntax.
We value simplicity and clarity well above the
somewhat slower execution of a “scripting lan-
guage’’. Clarity is particularly important for hams
who do not do software development every day.

Finally, the object oriented approach is a natural
way of expressing the capabilities of amateur rigs,
which come in families. For example, here is the
current Rigserve class hierarchy for the Ten-Tec
Orion:

object → Backend → Tentec → TT_orion →
{ TT_orion_v1 | TT_orion_v2 }

Backend is the fundamental rig object. It contains
some status reporting and defines the range of stan-
dard methods.

Class Tentec, based on Backend, provides methods
to work with the serial port. TT_orion describes
the bulk of the Orion’s features, while TT_orion_v1
and TT_orion_v2 express the small differences be-
tween the version 1 and version 2 firmware (e.g., S-
meter calibrations).

A similar hierarchy will support Icom’s CI-V inter-
faced rigs. Currently, we support the Icom R8500
and R75.

Rigserve’s object approach easily allows for an
“unlimited” number of rigs of the same or different
types to be made available over a single IP port.
Limits are imposed by the available I/O ports and
memory, but not by the software architecture.

Rigserve command Comment

open RIG1 TT_orion_v1 Create instance of a v1
Orion

put RIG1.CONTROL.init
/dev/ttyS0 57600

Associate with serial port
& baud rate

get RIG1.CONTROL.init Initiate rig and return ID
info

get RIG1.VFOA.freq Get VFO A frequency

get RIG1.MAIN.rx_mode Get Main receiver mode

Table 1. Sample Rigserve Commands

To allow for the widely different capabilities of
rigs, Rigserve is developing a capability discovery
mechanism that client applications can use to see
which commands are supported. A more expres-
sive (but less efficient) protocol like xmlrpc may be
an alternative approach for Rigserve.

Rigserve now comprises about 3,500 lines of
Python and is distributed under the GNU General
Public License [6]. As a new project with only a
few developers, there is a lot of room to grow, and
we invite more participation.

Conclusion

Hamlib is an established software project that of-
fers rig contol interfacing to many types of ham
rigs for software application developers as a sub-
routine library. Rigserve is a new approach that im-
plements rig control via a TCP/IP interface. More
details are available on their project web sites.

These projects are examples of how open source
software can be developed with a collaborative ap-
proach using a comprehensive project hosting ser-
vice like SourceForge.net, which offers many ser-
vices that greatly facilitate your project, including
version control servers, forums, web services, and
archives.

References

[1] SourceForge, Inc., SourceForge.net Home Page, http://www.sourceforge.net.

[2] Hamlib Project, Ham Radio Control Libraries, http://www.hamlib.org.

[3] Free Software Foundation, GNU Lesser General Public License,
http://www.gnu.org/licenses/lgpl.html.

[4] SWIG Project, Simplified Wrapper and Interface Generator, http://www.swig.org.

[5] Rigserve Project, Rigserve Website, http://rigserve.sourceforge.net.

[6] Free Software Foundation, GNU General Public License, http://www.gnu.org/licenses/gpl.html.

	SourceForge, Hamlib, and Rigserve:
Free Beer, Free Speech, and Rig Control
	Abstract
	KeyWords
	Introduction
	About Open Source Development
	The Hamlib Project
	The Rigserve Project
	Conclusion
	References

